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ABSTRACT
Machine learning (ML) is becoming a powerful tool for a variety of
applications where artificial intelligence solutions are required. A
ML benchmark is a standard suite to measure, evaluate and compare
the performance and efficiency of ML systems. This study analyzes
the benchmark results from two famous benchmarks MLMark and
MLPerf to provide a basis of comparison between both benchmarks
as well as to provide recommendations on computer architectures
to utilize for ML inferencing. Lastly, special emphasis is placed on
the performance of edge AI devices.
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1 INTRODUCTION
As there is a growing demand of ML applications, numbers of
different ML inference systems have been developed ranging from
embedded devices to data-center solutions. Many ML benchmarks
[1] were developed both by academic and industrial organizations
such as AI Benchmark [2], MLMark [3, 4], MLPerf [5, 6] and so on.
The two benchmarks focused on in this article are MLMark and
MLPerf that are used by various benchmark submitters.
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Table 1: Basic Information of MLPerf and MLMark

MLMark is a ML inference benchmarking solution for edge de-
vices created by the EmbeddedMicroprocessors Benchmark Consor-
tium (EEMBC) in 2019. MLPerf was founded in February of 2018 as
a collaborative system by both companies and academic researchers
to provide an all-inclusive benchmarking tool for neural network
training and inference. The results from MLPerf contain both open
and closed divisions. Only the closed division data was utilized as
its testing restrictions allow for a fair comparison between devices.
Both benchmarks use similar tasks, inference models, scenarios,
and other metrics as shown in Table 1

MLPerf and MLMark were analyzed using the image classifica-
tion task with the ResNet adMobileNet models and, in later sections,
the object task with the SSDMobileNet model. The data was gath-
ered from the datasheets on the web sites of MLPerf and MLMark;
however, MLPerf data types were extracted from their GitHub as
they are not provided in the MLPerf datasheet. The latency data of
MLPerf was updated to the 95th percentile latency found within
MLPerf’s extensive documentation.

Since the edge AI device market grows fast, the performance of
edge AI devices was analyzed with respects to the power consump-
tion and cost. This allows for a comparison between the edge AI
devices that can then be utilized for device selection.

In the following sections, first presented is the methodology
in section 2 alongside related performance factors. Section 3 and
4 present the performance analysis and comparison of edge AI
devices respectively. Section 5 is the conclusion.
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2 METHODOLOGY
To carry out the comparison between the MLMark and MLPerf
benchmarks, firstly, platforms were selected from both benchmarks
that utilized their own software framework. Secondly, three trained
ML models were utilized: two concerning image classification, Mo-
bileNet and ResNet, and the last one concerning object detection,
SSDMobileNet. Thirdly, the most popular performance metrics used
in both academia and industry were used for comparison: latency
and throughput. Lastly, the cost and power consumption informa-
tion of the devices, gathered from manufacturer websites, were
used to study the performances of the edge AI devices. In summary,
a listed version of the methodology follows:

• Selected platforms with their own software framework from
two major ML benchmarks MLPerf and MLMark for com-
parison.

• Used three trained ML models MobileNet, ResNet, and SSD-
MobileNet.

• Used latency and throughput for comparison.
• Included the cost and power consumption information of
devices.

2.1 Data and Performance Related Factors
There are 8 platforms in the MLMark datasheet and 23 platforms in
the closed divisionMLPerf datasheet. They are listed with their core,
accelerators and type in Table 2. Notice that some of the platforms
may have different accelerators.

2.1.1 Software Framework. Also notice that some platforms have
several results with different software frameworks in MLPerf as
shown in Table 3. By using their own framework, the latency is
1.13 to 3.83 times shorter. This is equivalent to an increase in speed
as the systems are more responsive.

2.1.2 Accelerator. The MLPerf datasheet shows that some plat-
forms’ results have both CPU only and CPU with accelerators as
shown in Table 4. Latency can be reduced 1.5 to 2.48 times by using
accelerators. Same as 2.1.1, This is equivalent to an increase in speed
as the systems are more responsive.

2.1.3 Data Types. Table 5 presents the relationship between per-
formance and data types from MLMark results. This shows that
FP16 can have 13% to 130% better performance than FP32. INT8
can have 500% to 2000% better performance; Coral Dev board’s INT
performances are very high due to its 8-bit TPU accelerator [7].

3 PERFORMANCE ANALYSIS
Table 6 presents 22 (5 fromMLMark and 17 fromMLPerf) platforms’
best performances. Some notes on performance analysis follow:

1. Table 6 ignores MLPerf’s results in the translation task and
results in multistream and server scenarios. Three models
were selected: MobileNet, ResNet, and SSDMobileNet that
match the models used in MLMark.

2. Results in MLMark are based on batch = 1 and concurrency
= 1.

3. There is no data type presented in the MLPerf datasheet.
Data types were extracted from GitHub and are presented
in Table 6

4. All platforms use their accelerators and own frameworks to
represent their highest performance.

5. Both benchmarks use the same inferencemodels as workload
except MLPerf which uses the ResNet model v1.5 which has
a slight difference from v1.0 used by MLMark.

6. Latency is measured as the 95th percentile of one inference
to completion in MLMark; however, MLPerf uses the 90th
percentile in their datasheet. For comparison, the 95th per-
centile was extracted for single stream from the MLPerf
documentation and is presented in Table 6

MLMark’s two metrics latency and throughput are analogous to
the MLPerf single-stream and offline metrics [8]. But the inference
models of workloads and testing conditions of those two ML bench-
marks are different. Therefore, conducting precise comparisons
across benchmarks is not suitable. Further, two more problems are
listed:

1. The latency of platform Raspberry Pi 4 using TF Lite in
MLPerf is much higher than the same platform using TF in
MLMark due to difference between those two frameworks.

2. NVDIA submitted its Edge AI device Jetson AGX Xavier to
both ML benchmarks. However, Table 6 shows the perfor-
mances have one order of magnitude difference between
those two benchmarks because its platform in MLPerf uses
both GPU and DLA which is NVIDIA’s new deep learning
accelerator including a special convolution core with 2048
MAC units [9].

The performances from MLMark shown in Table 6 will be dis-
cussed in Section 4. From the MLPerf part in Table 6 some observa-
tions follow:

1. There are two groups of platforms, one consists of platforms
for edge devices using the FP32 data type, and another group
for servers with higher performance using the INT8 data
type.

2. The throughput of Cloud TPU v3 platform [10] is propor-
tional to the number of TPUs in MLPerf datasheet and its
peak throughput can reach over one million fps for 128 TPUs.
The following equation is used to calculate the scalability
when the number of accelerators expands from n to m:

Scalability =

Per f ormancem
Per f ormancen

m
n

The scalability of Cloud TPU v3 platform is 99.2% when the
number of TPUs is expanded from 4 to 128.

3. Three platforms: Supermicro 4029 and 6049, and SCAN 3XS,
submitted by NVIDIA, also have large throughputs by using
many GPU accelerators [11] with a slightly weaker scalabil-
ity of 92% when the number of GPUs is expanded from 4 to
20.

4. Intel Xeon Platinum 9200 and Tencent Cloud have very low
latency and large throughput because they use the highest-
end CPUs available: the Intel Xeon Platinum 9200 and the
Intel Xeon 8255C which have 56 and 24 cores respectively
and their max turbo clock rate can reach 3.9 GHz; further,
they have special instructions for deep learning [12].

168



A Study of Machine Learning Inference Benchmarks ICAIP 2020, November 13–15, 2020, Chengdu, China

Table 2: Platforms in MLMark and MLPerf

Table 3: Latency (ms) vs. Software Frameworks Table 4: Latency (ms) of MobileNet FP32 Using Accelerators
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Table 5: Performance vs. Data Type from MLMark Results

Table 6: Performance of Major Platforms in MLMark and MLPerf Results

4 COMPARISON OF EDGE DEVICES
Edge AI signifies that AI algorithms are processed locally on a hard-
ware device. The global edge AI hardware market is expected to
grow from USD 423.34 Million in 2018 to USD 1,929.21 Million by
2026 at a CAGR of 20.9% during the forecast period 2019-2026 [13].
The MLMark datasheet provides complete performance informa-
tion of five Edge AI platforms: Jetson AGX [14], Jetson Nano [15],
Raspberry Pi 4 [16], HiKey970 [17] and Coral Dev Board [7]. Addi-
tional information is added about energy consumption and cost for

comparison. In Table 7, latency and throughput of the workloads
MobileNet and SSDMobileNet are used to represent performance.
To compare the platforms, the following metrics are used: (1) La-
tency (MS), (2) Latency Per Power Unit (MS/W), and (3) Latency
Per USD (MS/USD).
Latency results for each platform are shown in Figure 1. A lower
latency value indicates better performance as the system is more
responsive. Jetson AGX has the lowest latency value whereas the
Raspberry Pi 4 has a high latency value. The Jetson AGX is designed
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Figure 1: Latency (ms)

Figure 2: (1/Latency) per power unit

Figure 3: (1/Latency) per USD

for AI inferencing capabilities on edge devices and is focused on
computing density. The Raspberry Pi 4 is designed to be a low
power and low performance device for general computing tasks.
Figure 2 compares the power efficiency of each platform. The power
efficiency of each platform is evaluated by comparing how much
performance is gained per power unit (Watts). For a more intuitive
comparison the inverse of the latency, 1

latency , is used to describe
the performance. The Jetson AGX has the best performance gain
per wattage whereas the Raspberry Pi 4 has the lowest.
Figure 3 draws out the cost comparison in relation to each platform’s
performance. Jetson Nano and Jetson AGX are cost effective as they
have good performance per USD due to being designed specifically
for deep learning. As is apparent in the above figures, using GPUs as
accelerators results in overall better latency and throughput results
which means better cost and power efficiency.

5 CONCLUSION
Based on the results of MLPerf and MLMark and information from
manufactures’ websites, the gathered data is studied, factors relating
to performance are analyzed, and performance of some edge AI
devices is compared.

Due to the limitation of the number of results and unclear infor-
mation, the analysis of the performance of language translation and
the comparison in multistream and server scenarios is not possible.
Later, the study will be expanded to include these scenarios.

From the point-of-view of end users, the following is required:
1. A well-organized category based on various applications

and/or different scenarios. The current closed division of
MLPerf shows a 5-order of magnitude difference in perfor-
mance [18] which makes it difficult for users to make com-
parisons.

2. Clear conditions such as data type for each individual result.
3. Power consumption information.
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